
ABSTRACT
This paper explores the question of how best to allocate habitat restoration

effort over space and time. Stylized examples are used to illustrate how threshold
effects, competition among projects, risk, learning, and the choice of restoration
objective affect desirable effort allocations.  The paper concludes with some
thoughts on the applicability of decision modeling to the habitat restoration plan-
ning problem.

INTRODUCTION
The allocation of limited resources over space and time is a key element of

habitat restoration planning.  Restoration planners must choose which activities to
undertake, whether to spread effort among many projects or to focus on a few proj-
ects, and whether to launch projects as quickly as possible or to proceed experimen-
tally. This paper identifies some salient features of this allocation problem,
demonstrates their influence on desirable effort allocations, and assesses the suit-
ability of decision modeling techniques for restoration planning.

The goal of habitat restoration may be expressed in general terms, such as
“recover endangered species” or “improve habitat,” but here the emphasis will be on
goals that can be expressed as optimization problems, such as “maximize the
number of returning spawners” or “minimize extinction risk for a population.” The
goal may be expressed in terms of restoration activity (e.g., miles of road decommis-
sioned), human values (e.g., social welfare or economic impact), fish population
characteristics (e.g., population size or extinction risk), or ecosystem characteristics
(e.g., temperature change or reduced sediment load). Each of these can imply a
different best allocation of restoration effort. This paper treats ecosystem character-
istics as the yardstick by which success is measured and the level of restoration
activity as the choice variable. Of course, it may in practice be very difficult to
assess how ecosystem characteristics change in response to restoration effort.

Other aspects of the decision problem may be as important to the allocation
decision as the chosen goal. Allocation decisions must be made at several spatial
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1- This section follows Wu and Boggess (2000), who analyze the link between fish populations and habitat restoration efforts in the John Day River of
Oregon.

scales, and an allocation may be efficient in
each of its parts yet inefficient as a whole.
Cumulative (or threshold) effects within
watersheds are likely, so that benefit is not a
simple linear function of effort. Temporally,
the possibility of learning from pilot projects
must be weighed against the potential costs
of waiting, and there are often lags between
project implementation and efficacy.
Metapopulation dynamics are both a spatial
and a temporal complication. Importantly,
decisions must be made under imperfect
information about — or even ignorance of —
both natural and social aspects of the project.

Below, stylized examples illustrate the
importance of these considerations to the
allocation problem. The next section
addresses the spatial allocation problem in
simple terms through a model with two
competing projects. The paper then explores
risk due to the inherent uncertainty of
project outcomes, the possibility of learning
from pilot projects, and the impact of an
extremely risk-averse objective function on
the desired effort allocation. The concluding
section assesses the applicability of decision
modeling to habitat restoration planning and
suggests some elements of a decision science
research to support this planning.

TWO RIVERS, ONE BUDGET1

Consider the problem of allocating
restoration effort among two identical river
basins so as to maximize some measure of
ecosystem health. In each river, the more
effort expended the greater is ecosystem
health, but let us suppose that this relation-
ship is sigmoidal rather than linear — that
is, the marginal benefit of restoration effort
is small at low effort levels, increases rapidly
over the mid-range of effort, and decreases
again as ecosystem health tapers off to some
ceiling (Figure 1).

Suppose the goal is to maximize the sum
of ecosystem health in the two basins, and
that effort can be distributed between the

rivers in any way, subject to a limit on total
effort (i.e., a ‘budget’). Letting Hi and Ei

represent health and effort, respectively, in
river i, the problem can be expressed as one
of constrained optimization: 

maximize HA + HB (1)

subject to 1) EA + EB ≤ Budget (of time, 
personnel, funds, etc.)

2) Hi is the sigmoidal function of 
Ei shown in Fig. 1

Figures 2 and 3 depict this problem
graphically by showing the health of the two
rivers as mirror images — that is, EA

increases from the left and EB from the right
— which allows the sum HA + HB to be
depicted at all allocations of effort possible
under a given budget constraint (here 12 and
6 units of effort, respectively). Figure 2
shows that when the budget is high relative
to what’s required to achieve maximum
health, it is best to split the effort evenly
among the rivers. By contrast, Figure 3
shows that when the budget is relatively
small, it is best to concentrate the effort on
one river. Given this problem, then, if the
budget is very large, many distributions will
be optimal or nearly so — but if the budget is
small, spreading it among projects is a very
poor allocation.

The problem as posed is not realistic, but
the simple model provides a clear picture of
how rules of thumb (e.g., “address the worst
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Figure 1. Cumulative effect



2- This approach is based on a particular implicit utility function (see e.g., Varian 1993 pp. 189-90).

problems first”, or “spread the budget widely
among projects”) may lead to ineffective
resource use. More complicated scenarios
(heterogeneous rivers, differential respon-
siveness to restoration effort, etc.) can be
formulated as linear or nonlinear program-
ming problems to suggest allocations and to
test the sensitivity of different plans to
assumptions about model parameters.

INTRODUCING UNCERTAINTY 
A serious weakness of the above analysis

is that it ignores uncertainty about project
outcomes. If outcomes are uncertain in the
small-budget case described above, for
example, diversification across projects
might be desired to reduce the chance of an
entirely disastrous outcome, even though we
have seen that when outcomes are known

with certainty all effort should be expended
on a single river. The degree to which
outcome risk influences the preferred course
of action depends on both the degree of
uncertainty about outcomes and on the deci-
sionmaker’s attitude toward risk.

A straightforward way to incorporate risk
in the analysis is a mean-variance objective
function, commonly used for portfolio analy-
sis (see, for example, Bodie, Markus, and
Kane 1996)2. In this approach, the decision
problem is to maximize the expected value of
the outcome less some penalty for variability,
which is a function of the variance of the
sum of ecosystem health in the rivers and a
penalty parameter k:

Maximize E(HA + HB) – kV(HA + HB) (2)

subject to the same constraints as before.
Here, the parameter k represents the deci-
sionmaker’s degree of aversion to risk. 

Figure 4 shows one river’s ecosystem
health as a function of restoration effort
expended on an uncertain project for which
two discrete outcomes are possible. While the
expected value (the dashed line) is the same
as the deterministic values in Figure 2, here
two outcomes are possible, High or Low.
Given this uncertainty in two rivers, the deci-
sionmaker must choose how to allocate effort.

Figure 5 shows the value of the objective
(2) under different values of the risk aversion
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Figure 2. Competing projects 
— large budget case

Figure 3. Competing projects 
— small budget case

Figure 4. Discrete uncertain outcomes
— small budget case



parameter k. The objective value, which is
now a function of ecosytem health, increases
from the left for River A and from the right
for River B, as before. When the decision-
maker doesn’t care about risk (k = 0), the
best strategy is to focus all effort on one
river, just as in the no-risk case from the
previous section; when k is high, it is prefer-
able to spread the funds among projects, that
is, to hedge bets. 

Quadratic programming, with the objec-
tive of minimizing the variance of total benefit
subject to some minimum level of benefits, is
a convenient way to solve more general prob-
lems of this sort. Extinction risk can also be
addressed in the allocation problem via an
appropriately articulated goal. 

LEARNING FROM PILOT PROJECTS 
Pilot projects, field trials or other infor-

mation gathering may reduce uncertainty in
many cases, allowing managers to make
more informed decisions. The gains from
learning must be weighed against the poten-
tial cost of waiting, and usually neither can
be known with certainty.

The economics literature on learning is
extensive (and, by the way, similar to the
ecology literature on optimal foraging).
Decision trees provide one simple tool for
assessing the value of experimentation.
Imagine the same uncertainty over outcomes
as in the previous section, except that the
planner now faces the same allocation deci-

sion in two consecutive years, and has the
option to reduce uncertainty by learning: by
investing at least one unit of effort in a river,
the planner can learn the river’s “type,”
which may be either High (i.e., very respon-
sive to restoration work) or Low. Suppose
knowing a river’s type removes all uncer-
tainty about how it will respond to restora-
tion effort. While knowing the type of both
rivers could aid the planner, the information
comes at a cost if the planner is risk-neutral,
because it can only be obtained by foregoing
the option to concentrate effort entirely on
one river (recall from Figure 5 that the best
decision in the small-budget case, given risk
neutrality, was to concentrate on one river).
Figure 6 shows a simple example of a deci-
sion tree when outcomes are described by the
sigmoidal function of previous sections, with
uncertain results and a small budget, as in
Figure 5. The left-most box represents the
time at which the planner chooses whether
to invest at least some effort in both rivers so
as to learn both their types. The circles
represent probability nodes, the planner’s
estimates of the probabilities of various
outcomes depending on the decision made in
the first period. In period one, the planner
chooses whether to invest in learning, which
implies a lower first-period expected benefit
but reveals the types of both rivers. After
this decision is made, the planner acquires
the first-period benefit (10.2 or 12.1) and
learns the type of one or both rivers. In
period two, if the planner knows the type of
both rivers, there will be no uncertainty
about the best allocation, and the planner
can simply choose the best strategy depend-
ing on the information now available.
Depending on whether the types are both
High, both Low, or mixed, the second-period
benefits are 16.2, 8.1, or 16.1, respectively.
By contrast, if the planner did not invest in
information gathering in period 1, but chose
to concentrate all effort on River A, the
optimal choice will depend on the revelation
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Figure 5. E(A+B) - kV(A+B) 
— small budget case



3- Derived from the risk-neutral scenario (k=0.00) in Figure 5: 12.1 corresponds to the highest achievable level of ecosystem health when restoration
is concentrated on one river; 10.2 corresponds to the highest achievable level of ecosystem health when at least one unit of the budget is spent on each
river, which is necessary to learn the type of both rivers.

4- Derived from Figure 4 for the small budget scenario (total restoration effort = 6) as follows:
16.2 = 14.0 (ecosytem health associated with applying effort=6 to either river of High type)

+  2.2 (ecosytem health associated with applying effort=0 to the other river of High type)
8.1 = 6.0 (ecosytem health associated with applying effort=6 to either river of Low type)

+ 2.1 (ecosytem health associated with applying effort=0 to the other river of Low type)
16.1 = 14.0  (ecosytem health associated with applying effort=6 to the river of High type)

+ 2.1 (ecosytem health associated with applying effort=0 to the river of Low type)
16.1 = 14.0  (ecosytem health associated with applying effort=6 to River A, type High)

+ 2.1 (expected ecosytem health of applying effort=0 to River B, type unknown)
12.1 =   2.1 (ecosytem health associated with applying effort=0 to River A, type Low)

+ 10.0 (expected ecosytem health of applying effort=6 to River B, type unknown).
5- Sum of Period 1 and Period 2 ecosystem health.
6- 24.3 = 0.25*26.4 + 0.25*18.3 + 0.5*26.3.
7- 26.2 = 0.5*28.2 + 0.5*24.2.

Figure 6. A decision tree. This figure shows, from left to right, actions and probabilities
of uncertain outcomes before action is taken in period 1. If the planner invests in learning the
types of both rivers, there is no uncertainty left in period two. If the planner does not make
this investment and learns the type of only one river (here River A), there is still uncertainty
about River B’s type, but this node is not shown since it is not needed for the planner to make
the optimal decision. The planner’s problem is to choose the action plan that maximizes the
expected benefit of restoration. As the results at the bottom show, in this case not learning
turns out to be a better plan (in expectation).
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8- Derived by graphing the Low outcome from Figure 4 for Rivers A and B (with HA increasing from the left and HB from the right), then taking
their sum.

of A’s type. If A is revealed to be ‘High’, the
best thing to do is sink all of the next
period’s budget into A, since it is a sure
thing. If A turns out to be ‘Low’, the best
thing to do is bet that B will be ‘High’. The
decision tree shows the set of possible actions
and their expected outcomes. In this (entirely
artificial) case, the expected value of learning
does not merit the cost, so the planner would
be better off (in expectation) to plunge ahead
without learning the type of both rivers.

While this example assumes that invest-
ing in learning leads to definitive results, the
learning process will usually only produce
new, but still uncertain, estimates of outcome
probabilities. It may even be the case that
nothing is learned. Appropriate modification
of the decision tree can address these compli-
cations. Risk-aversion can also be incorpo-
rated into a decision tree via introduction of
an appropriate utility function (see Winston
1994 for an accessible introduction). Other
analytical techniques to address intertempo-
ral planning problems include dynamic
programming (essentially a generalized deci-
sion tree representation) and simulation.

DIFFERENT GOALS, DIFFERENT
ALLOCATIONS

The scenarios above have assumed that
the desired effort allocation maximizes the
expected value of ecosystem health, with
perhaps a penalty for risk. Another type of
goal, often motivated by strong risk aversion
or by lack of information, is to maximize
ecosystem health in the worst-case scenario
(known as the “maximin” strategy). This
strategy implies that the decision-maker
does not consider the upside potential of risk,
but is instead focused entirely on avoiding
very bad outcomes.

Figure 7 depicts such a strategy8. The
choice set is exactly the choice set under
uncertainty when both rivers turn out to be
type Low (that is, in the worst-case scenario).
The goal is to choose an allocation that will

make the best of this worst situation. Given
the small budget and this objective, the best
we can do is concentrate on one river or the
other. Doing so allows us to avoid the worst
possible outcome, which would result from
splitting effort equally among two rivers that
both turn out to be the Low type.

The maximin strategy does not require
that outcome probabilities be known or esti-
mated, as long as the set of possible
outcomes can be defined. It may be useful as
a way for planners to formalize notions of the
safe minimum standard (from the economics
literature) and the precautionary approach
(from the conservation biology literature). In
addition to maximin and maximizing
expected value of the outcome, many other
formulations of the goal can be considered
(see Winston 1994 for some examples).

CAN DECISION MODELING
CONTRIBUTE TO HABITAT
RESTORATION PLANNING?

Restoration planning without reference to
a well-posed decision problem may result in
significant missed opportunities. For
example, failure to account for a nonlinear
relation between restoration effort and bene-
fits, such as in the first example above, could
lead to greatly reduced restoration efficacy.
In the context of habitat restoration plan-
ning, a well-posed decision problem should
explicitly address threshold effects, budget
limitations, risk, and opportunities for exper-
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Figure 7. Maximin strategy 
— small budget



imentation, if at all possible. A clear state-
ment of the objective is also essential,
because different objectives, even when they
share the same general aim of conserving
endangered species, may result in quite
different preferred effort allocations. The
modeling approach described in this paper
requires that a link between effort and
outcomes be established, at least probabilis-
tically. Without this link, there is little basis
for taking decisions.

Assuming a coherent decision problem
can be developed, what might habitat
restoration planners gain by using decision
models of the sort described above? In practi-
cal terms, models may produce situation-
specific results or aid in the development of
rules of thumb that can be used across proj-
ects, watersheds, and populations.
Conceptually, modeling can address uncer-
tainty, scale issues, extinction risk, and the
incorporation of information through
Bayesian learning, multiple objectives,
multiple inputs, and multiple outputs. While
models that produce precise prescriptions are
almost surely unattainable in the field of
habitat restoration planning, modeling can
bring focus to planning discussion and help
prioritize information gathering needs. 

Mathematical programming models
drawing on the many tools available in the
operations research literature have been
stressed above. Analytical models can also
provide some useful insight into the nature
of the problem, and with a range of plausible

parameters can test whether there may be
some reasonably robust rules of thumb for
allocation. Simulation models may be helpful
when the complexity of the system makes
mathematical programming intractable.  

The stylized examples presented above
suggest a research agenda, focusing on infor-
mation and risk, for the decision science
aspect of habitat restoration planning. Key
elements of this agenda might include:

• Representing the “technology” of
habitat restoration, such as substitutability
or complementarity of activities in habitat
restoration, which could imply very different
efficient effort allocations.

• Models to identify effective information
acquisition strategies.

• Linking a restoration effort allocation
model to a model of extinction risk, which
could enable planners to address, for example,
the feasibility of mitigating habitat loss by
increasing restoration effort on other lands.

• Providing a framework for considering
trade-offs among risks (short-term vs. long-
term risks, risks in one population vs. in
another).

• Explicitly introducing metapopulation
structure and dynamics into the allocation
problem.
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